GWs from first-order phase transitions
David J. Weir, University of
Helsinki
NORDITA, 5 July 2017
tinyurl.com/nordita-weir
arXiv:1705.01783 and references therein
What's next? LISA
LISA: three arms (six laser links),
2.5 M km separation
Launch as ESA’s third large-scale
mission (L3) in (or before) 2034
Proposal officially submitted
earlier this
year arXiv:1702.00786
Officially adopted on 20.6.2017
From the LISA proposal:
Thermal phase transitions
Standard Model is a crossover
Kajantie et al. ; Karsch et al. ; ...
First order possible in extensions (xSM,
2HDM, ...)
Andersen et al. ,
Kozaczuk et al. , Carena et al. ,
Bödeker et al. , Damgaard et al. ,
Ramsey-Musolf et al. , Cline and Kainulainen,
...
Baryogenesis?
GW PS ⇔ model information?
What the metric sees at a thermal phase transition
Bubbles nucleate and expand, shocks form, then:
$h^2 \Omega_\phi$ : Bubbles + shocks
collide - 'envelope phase'
$h^2 \Omega_\text{sw}$ : Sound waves set up
- 'acoustic phase'
$h^2 \Omega_\text{turb}$ : [MHD] turbulence -
'turbulent phase'
Sources add together to give observed GW power:
$$ h^2
\Omega_\text{GW} \approx h^2 \Omega_\phi + h^2
\Omega_\text{sw} + h^2 \Omega_\text{turb}$$
Equation of motion is (schematically)
Liu,
McLerran and Turok; Prokopec and Moore
$$ \partial_\mu \partial^\mu \phi + V_\text{eff}'(\phi,T) +
\sum_{i} \frac{d m_i^2}{d \phi} \int
\frac{\mathrm{d}^3 k}{(2\pi)^3 2 E_i} \delta f_i(\mathbf{k},\mathbf{x}) = 0$$
$V_\text{eff}'(\phi)$: gradient of finite-$T$ effective potential
$\delta f_i(k,x)$: deviation from equilibrium phase space density of $i$th
species
$m_i$: effective mass of $i$th species:
Leptons: $m^2 = y^2 \phi^2/2$
Gauge bosons: $m^2 = g_w^2 \phi^2/4$
Also Higgs and pseudo-Goldstone modes
Put another way:
$$ \overbrace{\partial_\mu T^{\mu\nu}}^\text{Force on $\phi$} -
\overbrace{\int \frac{d^3 k}{(2\pi)^3}
f(\mathbf{k}) F^\nu }^\text{Force on particles}= 0 $$
This equation is the realisation of this idea:
Yet another interpretation:
$$ \overbrace{\partial_\mu T^{\mu\nu}}^\text{Field part} -
\overbrace{\int \frac{d^3 k}{(2\pi)^3}
f(\mathbf{k}) F^\nu }^\text{Fluid part}= 0 $$
i.e.:
$$ \partial_\mu T^{\mu\nu}_\phi + \partial_\mu
T^{\mu\nu}_\text{fluid} = 0 $$
We will return to this later!
Envelope approximation
Envelope approximation
Kosowsky, Turner and Watkins;
Kamionkowski, Kosowsky and Turner
Thin, hollow bubbles, no fluid
Stress-energy tensor $\propto R^3$ on wall
Solid angle: overlapping bubbles →
GWs
Simple power spectrum:
One length scale (average radius $R_*$)
Two power laws ($\omega^3$, $ \sim
\omega^{-1}$)
Amplitude
⇒ 4 numbers define spectral form
NB: Used to be applied to shock waves (fluid KE),
now only use for bubble wall (field gradient energy)
Envelope approximation
4-5 numbers parametrise the transition:
$\alpha_{T_*}$, vacuum energy fraction
$v_\mathrm{w}$, bubble wall speed
$\kappa_\phi$, conversion 'efficiency' into gradient energy
$(\nabla \phi)^2$
Transition rate:
$H_*$, Hubble rate at transition
$\beta$, bubble nucleation rate
→ ansatz for $h^2 \Omega_\phi$
[only matters for near-vacuum/runaway transitions]
Envelope approximation
Coupled field and fluid system
Ignatius, Kajantie, Kurki-Suonio and
Laine
Scalar $\phi$ and ideal fluid $u^\mu$:
Split stress-energy tensor $T^{\mu\nu}$ into field and fluid
bits
$$\partial_\mu T^{\mu\nu} = \partial_\mu
(T^{\mu\nu}_\phi + T^{\mu\nu}_\text{fluid}) = 0$$
Parameter $\eta$ sets the scale of friction due to plasma
$$\partial_\mu T^{\mu\nu}_\phi = \tilde \eta
\frac{\phi^2}{T} u^\mu \partial_\mu \phi \partial^\nu \phi
\quad
\partial_\mu T^{\mu\nu}_\text{fluid} = - \tilde \eta
\frac{\phi^2}{T} u^\mu \partial_\mu \phi \partial^\nu \phi
$$
$V(\phi,T)$ is a 'toy' potential tuned to give latent heat
$\mathcal{L}$
$\beta$ ↔ number of bubbles; $\alpha_{T_*}$ ↔
$\mathcal{L}$, $v_\text{wall}$ ↔ $\tilde \eta$
Begin in spherical coordinates:
what sort of solutions does this system have?
Velocity profile development: small $\tilde \eta$ ⇒ detonation
(supersonic wall)
Velocity profile development: large $\tilde \eta$ ⇒ deflagration
(subsonic wall)
$v_\mathrm{w}$ as a function of $\tilde \eta$
Cutting [Masters dissertation]
Velocity power spectra and power laws
Fast deflagration
Detonation
Weak transition: $\alpha_{T_*} =0.01$
Power law behaviour above peak is between $k^{-2}$ and
$k^{-1}$
“Ringing” due to simultaneous nucleation, unimportant
GW power spectra and power laws
Fast deflagration
Detonation
Causal $k^3$ at low $k$, approximate $k^{-3}$ or $k^{-4}$ at high $k$
Curves scaled by $t$: source until
turbulence/expansion
→ power law ansatz for $h^2 \Omega_\text{sw}$
Transverse versus longitudinal modes – turbulence?
Short simulation; weak transition (small $\alpha$):
linear; most power in longitudinal
modes
⇒ acoustic waves, turbulent
Turbulence requires longer timescales
$R_*/\overline{U}_\mathrm{f}$
Plenty of theoretical results, use those instead
Kahniashvili et al.; Caprini, Durrer
and Servant; Pen and Turok; ...
→ power law ansatz for $h^2 \Omega_\text{turb}$
Putting it all together - $h^2
\Omega_\text{gw}$ arXiv:1512.06239
Three sources, $\approx$ $h^2\Omega_\phi$,
$h^2\Omega_\text{sw}$, $h^2 \Omega_\text{turb}$
Know their dependence on $T_*$, $\alpha_T$,
$v_\mathrm{w}$, $\beta$ Espinosa, Konstandin, No, Servant
Know these for any given model, predict the
signal...
(example, $T_* = 100 \mathrm{GeV}$, $\alpha_{T_*} =
0.5$, $v_\mathrm{w} =0.95$, $\beta/H_* = 10$)
Putting it all together - physical models to GW power
spectra
Model ⟶ ($T_*$, $\alpha_{T_*}$,
$v_\mathrm{w}$, $\beta$) ⟶ this plot
... which tells you if it is detectable by LISA
(see arXiv:1512.06239 )
Detectability from acoustic waves alone
In many cases, sound waves dominant
Parametrise by RMS fluid velocity $\overline{U}_\mathrm{f}$ and
bubble radius $R_*$ (quite
easily obtained Espinosa, Konstandin, No and
Servant )
Sensitivity plot:
The pipeline
Choose your model
(e.g. SM, xSM, 2HDM, ...)
Dim. red. model
Kajantie et al.
Phase diagram ($\alpha_{T_*}$, $T_*$);
lattice: Kajantie et
al.
Nucleation rate ($\beta$);
lattice: Moore and
Rummukainen
Wall velocities ($v_\text{wall}$)
Moore and
Prokopec; Kozaczuk
GW power spectrum $\Omega_\mathrm{gw}$
Sphaleron rate
Very leaky, even for SM!
Questions, requests or demands...
Turbulence
MHD or no MHD?
Timescales $H_* R_*/\overline{U}_\mathrm{f} \sim
1$, sound waves and turbulence?
More simulations needed?
Interaction with baryogenesis
Competing wall velocity dependence of BG and
GWs?
Sphaleron rates in extended models?
The best possible determinations for xSM, 2HDM,
$\Sigma$SM, ...
What is the phase diagram?
Nonperturbative nucleation rates?