From the LISA proposal:
Thermal phase transitions
Standard Model is a crossover
Kajantie et al. ; Karsch et al. ; ...
First order possible in extensions (xSM,
2HDM, ...)
Andersen et al. ,
Kozaczuk et al. , Carena et al. ,
Bödeker et al. , Damgaard et al. ,
Ramsey-Musolf et al. , Cline and Kainulainen,
...
Baryogenesis?
GW PS ⇔ model information?
What the metric sees at a thermal phase transition
Bubbles nucleate and expand, shocks form, then:
$h^2 \Omega_\phi$ : Bubbles + shocks
collide - 'envelope phase'
$h^2 \Omega_\text{sw}$ : Sound waves set up
- 'acoustic phase'
$h^2 \Omega_\text{turb}$ : [MHD] turbulence -
'turbulent phase'
Sources add together to give observed GW power:
$$ h^2
\Omega_\text{GW} \approx h^2 \Omega_\phi + h^2
\Omega_\text{sw} + h^2 \Omega_\text{turb}$$
Coupled field and fluid system
Ignatius, Kajantie, Kurki-Suonio and
Laine
Scalar $\phi$ and ideal fluid $u^\mu$:
Split stress-energy tensor $T^{\mu\nu}$ into field and fluid
bits
$$\partial_\mu T^{\mu\nu} = \partial_\mu
(T^{\mu\nu}_\phi + T^{\mu\nu}_\text{fluid}) = 0$$
Parameter $\eta$ sets the scale of friction due to plasma
$$\partial_\mu T^{\mu\nu}_\phi = \tilde \eta
\frac{\phi^2}{T} u^\mu \partial_\mu \phi \partial^\nu \phi
$$
$V(\phi,T)$ is a 'toy' potential tuned to give latent heat
$\mathcal{L}$
$\beta$ ↔ number of bubbles; $\alpha_{T_*}$ ↔
$\mathcal{L}$, $v_\text{wall}$ ↔ $\tilde \eta$
Begin in spherical coordinates:
what sort of solutions does this system have?
Velocity profile development: small $\tilde \eta$ ⇒ detonation
(supersonic wall)
Velocity profile development: large $\tilde \eta$ ⇒ deflagration
(subsonic wall)
Velocity power spectra and power laws
Fast deflagration
Detonation
Weak transition: $\alpha_{T_*} =0.01$
Power law behaviour above peak is between $k^{-2}$ and
$k^{-1}$
“Ringing” due to simultaneous nucleation, unimportant
GW power spectra and power laws
Fast deflagration
Detonation
Causal $k^3$ at low $k$, approximate $k^{-3}$ or $k^{-4}$ at high $k$
Curves scaled by $t$: source until
turbulence/expansion
→ power law ansatz for $h^2 \Omega_\text{sw}$
Transverse versus longitudinal modes – turbulence?
Short simulation; weak transition (small $\alpha$):
linear; most power in longitudinal
modes
⇒ acoustic waves, turbulent
Turbulence requires longer timescales
$R_*/\overline{U}_\mathrm{f}$
Plenty of theoretical results, use those instead
Kahniashvili et al.; Caprini, Durrer
and Servant; Pen and Turok; ...
→ power law ansatz for $h^2 \Omega_\text{turb}$
Putting it all together - $h^2
\Omega_\text{gw}$ arXiv:1512.06239
Three sources, $\approx$ $h^2\Omega_\phi$,
$h^2\Omega_\text{sw}$, $h^2 \Omega_\text{turb}$
Know their dependence on $T_*$, $\alpha_T$,
$v_\mathrm{w}$, $\beta$ Espinosa, Konstandin, No, Servant
Know these for any given model, predict the
signal...
(example, $T_* = 100 \mathrm{GeV}$, $\alpha_{T_*} =
0.5$, $v_\mathrm{w} =0.95$, $\beta/H_* = 10$)
Putting it all together - physical models to GW power
spectra
Model ⟶ ($T_*$, $\alpha_{T_*}$,
$v_\mathrm{w}$, $\beta$) ⟶ this plot
... which tells you if it is detectable by LISA
(see arXiv:1512.06239 )
Sensitivity of LISA to acoustic waves alone
The pipeline
Choose your model
(e.g. SM, xSM, 2HDM, ...)
Dim. red. model
Kajantie et al.
Phase diagram ($\alpha_{T_*}$, $T_*$);
lattice: Kajantie et
al.
Nucleation rate ($\beta$);
lattice: Moore and
Rummukainen
Wall velocities ($v_\text{wall}$)
Moore and
Prokopec; Kozaczuk
GW power spectrum $\Omega_\mathrm{gw}$
Sphaleron rate
Very leaky, even for SM!